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The Maximum Entropy Principle as a Consequence of 
the Principle of Laplace 
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The maximum entropy principle states that the probability distribution which 
best rePresents our information is the one which maximizes the entropy with the 
given evidence as constraints. We prove that this principle is implied from the 
Laplace principle of equiprobabilities applied to the set S of all N-term se- 
quences of results which are compatible with the given evidence. We generalize 
to the "information gain" method of Kullback. 
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1. INTRODUCTION 

Since its proposal in 1957 by E. J. Jaynes (1'2) the "maximum entropy 
principle" (MEP) has been a subject of controversy. An extensive account 
of the "debate" between the advocates and the adversaries of the MEP has 
been given by J. Cyranski. (3) The present paper is written by an advocate, 
and its scope is to develop a simple, quantitative argument in favor of the 
MEP. 

As is well known, this principle serves to determine a "subjective" 
probability distribution when little is known. It states that, for a given 
amount of information, the probability distribution which best describes 
our knowledge is the one which maximizes the Shannon informational 
entropy subject to the given evidence as constraints. The usual objection of 
the adversaries consists in applying the MEP to tricky situations and in 
thus finding results which seem paradoxical. (4) Although there exist an- 
swers to these objections, we shall not be concerned by such problems since 
we intend to focus our attention on the simple case to which the MEP is 
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Since the 
knowledge of 
satisfying Eq. 
avoiding bias. 

usually applied, i.e. when the available information consists in the giving of 
the mean values of some random variables. 

Explicitly, the problem is presented as follows: let a = {q,  e 2 . . . .  , eg} 
be a finite set of mutually exclusive elementary events. The c i can be seen, 
for instance, as the possible outcomes of an experiment. Suppose now that 
the appearance of the e i is governed by a probability law /~ which is 
unknown, and that we only know the mean values ft of certain random 
variables fz(ei), l = 1,2 . . . . .  m defined on f~. In general the knowledge of 
does not fix the probability/t(ei) =/~i for there may exist an infinite number 
of different probability assignments p(et) = p~ giving the same mean values 
to ft(ei), so that we have 

k 

E P~(ei) =J~, l =  1,2 . . . . .  m (1) 
i = l  

true probability /x i cannot be found on the basis of our 
A 

fl, Jaynes put the problem of choosing between all Pi 
(1) one which best represents the available information by 

There is a special case to this problem which is well known from the 
everyday life: it is possible to have absolutely no information on the c~ 
except that they belong to fl, i.e., that they are possible outcomes. One then 
usually assigns to all r equal probabilities Pi = 1/k. This attitude is strongly 
suggested by intuition, since any other choice evidently implies bias, and 
was raised by Laplace to the status of a principle which bears his name. 

For the more general case in which our available information is given 
by Eq. (1), Jaynes proposed the MEP as a generalization of the principle of 
Laplace: the most unbiased probability assignment is, by the MEP, the one 
which maximizes the entropy subject to the constraints (1). He advanced 
several arguments to justify the MEP. (1'5'6) Unfortunately, these arguments 
have a qualitative character and leave many physicists unconvinced. In 
what follows we shall propose a new, quantitative argument in favor of the 
MEP. We shall show that if one accepts Laplace's principle, then the MEP 
follows automatically as a special case rather than as a generalization. We 
think it advisable to begin our discussion on an heuristic level which shall 
make transparent the physical argument. 

2. HEURISTIC INVESTIGATION 

Suppose that we repeat the initial experiment N times. The result will 
be a sequence ej,, % . . . . .  % ~ f~s, (Ji = 1,2 . . . . .  k). 

Since our only knowledge is that the mean values of fi(ei) are 3~, we 
ignore which sequence will be actually realized or with what relative 
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frequencies ni//N for the elementary events c i. We only know that, if N is 
sufficiently great, we shall have almost surely 

k F/i ~, 
V l  = 1 , 2  . . . .  , m ." Z N f / ( E i ) ~ - - - f /  

i=1  
(2) 

where the approximation ~ can be made as good as we wish by increasing 
N. 

Let S be the set of all sequences in f~N which satisfy (2). Since our only 
information is that the sequence which will be actually realized will belong 
almost surely to S, it is now evident how to choose the probability law Pi: 
by Laplace's principle we should choose, if possible, a Pi which assigns to 
all members of S the same probability. One can now show that such a 
probability exists, is unique, and maximizes the entropy subject to the 
constraints (I). This is our justification of the MEP. 

Indeed, it is easy to see that if Pi maximizes the entropy subject to (1), 
then the probabilities of all the members of S are the same. In fact, as is 
well known, there must exist constants X, Yt (Lagrange multipliers) such 
that 

~t0i (-- ~i 1)ilogPi) + X-~pi ~al Yl-ff'~pi [~i Pifl(Ei)] -'~'0 

which implies, if Pi =/= 0, 

log/,  = - 1 + x + ( 3 )  
1 

The constants X, Yl can be determined from ~pg = 1 and the con- 
straints (1). Now any element C = ej,cj2 �9 �9 �9 % of ~N has probability p(C) 
= I-[ iP7 i, where n i is the number of times that ei appears in the sequence C. 
If we take C ~ S, so that the relative frequencies ni /N obey (2), we shall 
have by virtue of Eq. (3): 

l o g p ( C )  

N 
n i ^ 

- ~.. ~ log pi----- - 1  + X +  ~t Ylfl 

We thus see that indeed, the probabilities f l (C)  of the elements of S 
are independent of ni /N (they depend only onj~ and N) so that they are all 
equal. It is also possible to prove the converse: if the p(C) (or log[p(C)]/ 
N) is independent of the ni /N for all C ~ S and N sufficiently great, then 
the probability distribution Pi on f~ maximizes the entropy. We shall present 
the proof of this assertion in the next section, where this discussion will be 
made on a rigorous level. 
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3. RIGOROUS DEVELOPMENT 

We now translate all that has been said in the preceding section in the 
usual epsilon-delta language. For example, relation (2) should be a state- 
ment of the type 

n/ - j~  < 6  

for any small positive & Likewise, the set S introduced above should 
depend on N, & So let us define, for any N ~ N and 8 > 0 the set 

SN,a= C E a  N: . ~ j ~ ( E i ) -  < 6 ,  Vl (4) 

where, as usual, n~ counts the number of appearances of e; in C. As is well 
known, a probability distribution p on ~2 satisfies (1) if and only if 

~[a > 0 :p(SN, ~ ) --)  1 (5 )  
N---) m 

We want to choose the most unbiased probability law Pi among all 
those satisfying Eq. (1) [or equivalently, Eq. (5)]. We now repeat the 
argument of the preceding section: since almost all sequences C which can 
actually appear shall belong to Su, a [cf. Eq. (5)] and since furthermore this 
is all we know, we should choose, according to Laplace's principle, a 
probability law Pi which assigns approximately equal probabilities to all 
members of Su, ~. In addition, this approximation should be as good as we 
wish, if we take 6 sufficiently small and N sufficiently great. The exact 
translation of this statement into mathematical language is the following: 

Ve > 0, 38 > 0 and 3N 0 ~ N such that 

i,o e(c  VN > No, VC, C' ~ SN, 6 : N N 

We use log[p(C)]/N instead of p(C) for two distinct reasons: The 
first is that we are guided by the preceding heuristic investigation. The 
second is that comparing p(C) would be useless. Indeed, it is obvious that 
p(C) tends uniformly to zero as N increases, for any C ~ ~2 u and any 
probability law pi. Thus [ p ( C ) - F ( C ' ) I  < �9 would be trivially satisfied 
independently of the choice of p~. 

Condition (6) is a rather involved mathematical statement which has a 
simple physical interpretation. On the other hand, the MEP is a simple 
mathematical statement whose exact physical interpretation is unknown. If 
we succeed in establishing the equivalence of condition (6) to the MEP, we 
shall have shown, that "maximization of the entropy" is a simple mathe- 
matical way of saying "assignment of (almost) equal probabilities to all 
sequences which are likely to appear." 
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The equivalence of (6) to the MEP will be established by the following 
theorem. Let us first make a remark: if the evidence (1) implies that some 
of the probabilities of c i are necessarily zero, it is advisable to exclude those 
Ei from ft. This is physically natural, since we know in advance that the 
excluded ~i are impossible to appear, and in addition it preserves us from 
unnecessary mathematical complications since, for example, the nice rela- 
tion (3) holds only for nonzero Pi. That is why we shall make the assump- 
tion that for each cj there exists a probability measure PJ(ei)=P~f on ~2 
satisfying (1) and such t h a t ~  4 ~ 0. It follows immediately that there exists a 
probability measure p satisfying (1) and such that p(ci)v ~ 0 for all i (take, 
for instance, p = ~jpJ/k). 

Theorem 1. Let ~2= (el,~2 . . . . .  Ek} be a set and j~(ei),l = 1, 
2 . . . . .  m be random variables on ft. Let furthermore .~ be real numbers 
and assume that there exists at least one probability measure p" satisfying 

~ap'ifz(ci) =)~, l =  1,2 . . . . .  m (1') 
i 

and such thatp" 4= 0, Vi. Let finallypi be any probability measure satisfying 
(1). Then Pi fulfills condition (6) if and only if it maximizes the entropy 
subject to the constraints (1). 

Proof. (a) Suppose that Pi maximizes the entropy. Then Pi ~ 0 for all 
i. Indeed, we have by hypothesis p~ 4= 0, Vi. Consider now the function 

g(a)=-~[api+(1-a)p~]log[api+(1-a)p~], a E [ 0 , 1 ]  
i 

If we had pi = 0 for some i, then it is easy to see that g'(a)---) - r162 when 
a--) l, so that g(1) could not be a maximum, as it should. Thuspi ~ 0 for all 
i. 

Since p; maximizes the entropy, we already know that there exist 
constants X, Yt such that (3) holds. Now for any ~ > 0 and N E ~ let 
C ~ SN, ~. Then 

loge(C) n, [ ni ] 
N -~i z ~fli -~fl(Ci) 

so that if C, C' ~ SN, ~ we find 

[logp(C) logp(C')l I~fl [ n i n'~ l 

[I ~iFli I ~di'n: --~lJ <~lYzl ~ f('i)--J~ q" N f / ( ' i )  
l 

< 28 lYzl 
1 
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Thus if for any e > 0 we chose 8 = c / ( 2 ~ l  I YA), we deduce (6). 
(b) Suppose that  p/ satisfies (6) together with relation (1). We set f0 = I 

and define the following vectors inside ~k. 

f0 = ( l , . . . ,  1), f, = (f ,(r  . . . . .  f,(~k)), q = ( logp,  . . . . .  log pk) 

k times (7) 

Let r, r' be any two vectors in R k satisfying 

r .  ft = r ' .  fl = )~, l = 0, 1 . . . . .  m (8) 

and ri > O, rj > O. 
We intend to show that  r .  q = r' �9 q. To do this, we proceed as follows. 

For  any E > 0, let 8 > 0 and N O be defined so that  (6) is true. We can take 
8 < e. Now set 8 ' =  6/[maxl~ilft(ei)l]. Since the rationals are dense in R, 
we can find nonnegative integers n i, n; and an integer N > N o such that 

I n` r i i n; r; ~ n , =  ' N V i = I  . . . .  , k : l  ~ -  < 6 ' ,  - ~ -  < 6 ' ,  ~ n i =  (9) 
I i i 

Consider now inside ~'~N any two sequences C, C '  having, respectively, 
ni/N and n~/N as relative frequencies for the r Then 

[ ~/ -~ j~(r ni _ r.ofl(ei) 

and thus C, C' ~ SN, 8. We deduce from the choice of 6 that 

~ ni ~i n i l o g p i  N l o g p i -  . ' < e (10) 

One now has 

Jr-q - r ' .  ql--  INril~ - 2 r ; l~  P,I 
i i 

<<. ni log Pi ~i rti n~ Pi' ~i rilOgp'- ~i -~ + ~ l o g p i -  ~i ~ l o g  

n; ~,  r i log Pi ni + ~/  ~ l o g p i -  ' <~i [ -~ - r i  [logpi I 

/'/i n ' l  t 
' ni - r; [log Pil 

< 26' ~ Ilog Pi[ + e < e 1 + 
i m a x z ~ i l f t ( , i ) l  
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We conclude that for any e ' >  0 one has [ r . q - f .  q[ < c', which 
implies r -  q = r' �9 q. We have thus proved 

A 

( r . f t = r ' . f t = f t V l  and r~>O, r ~ > O ) ~ q . r = q . r '  (11) 

Let us define the sets 

A=(r~R~:r . f z=O,  l=0,1 . . . . .  m) 

B = [ f 0 , f l , . . . ,  fm] (subspace spanned byfz) 

It is obvious that A is the orthogonal complement of B; A = B • and 
thus B = A • We shall now show that for all r ~ A one has r . q  = 0. If 
r = 0, this is obvious. If r ~ 0, consider the vector p' = (p] . . . . .  Pl,) from 
the assertion of the theorem and set for any b E R: r(b) --- p' + br. Since 
ri(0 ) =p/ '  > 0, we can find b :~ 0 such that ri(b ) > 0. Then r = b - l ( r ( b ) -  
p'). 

Since we have obviously r (b) .  fl = P "  ft =)~, we conclude from (11) 
that r .  q = 0. This is true for all r E A, so that q ~ A l = B, and thus there 
exist constants at, l = 0, 1 . . . . .  m, such that q = ~zm__oalfz, or equivalently 

Vi : logpi = a0+  ~ a~(ci)  
l = 1  

This is equivalent to relation (3) characterizing the maximum entropy 
distribution, via an obvious identification of terms. Thus, Pi maximizes the 
entropy subject to the constraints (1). [] 

4. COMMENTS 

We anticipate a possible question of the reader: How can the preced- 
ing theorem be compatible with the law of large numbers? For suppose we 
take as probability measure Pi on ~2 the one which maximizes the entropy 
subject to the constraints (1). Then the law of large numbers assures us that 
the sequence C which will appear after N repetitions of the experiment will 
have, almost surely, relative frequencies nJN~pi.  On the other hand, the 
theorem says that for the same Pi, all the sequences with relative frequen- 

cies such that ~i(ni/N)jr(ci)~--ft have approximately the same probability, 
even those for which nJN is quite different from p,.. But then why is a 
sequence with nJN'-'pi more likely to be realized? The answer to this 
question is simple: All the sequences satisfying ~i(ni//N)fl(~i)~_fl have, 
indeed, equal probabilities, but the number of the sequences for which in 
addition ni//N'~pi is overwhelmingly greater than the number of all other 
sequences for which ~] i(ni/N)ft(Ei)'~ft holds. The proof of this fact is very 
simple and is contained in essence in many papers on the MEP (see, e.g., 
Ref. 5, p. 231). 
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5. THE "INFORMATION GAIN" OF KULLBACK 

A few years after the fundamental article of Jaynes, Kullback (7) 
proposed a generalization of the MEP. Consider again the set [2 = {ei, 
c 2 . . . . .  Ok) of all possible outcomes of an experiment of which we ignore 
the exact probability law. Suppose that at a given moment our knowledge is 
correctly represented by a "subjective" probability measure q(Ei) --= qi on ~. 
If we acquire new evidence of the form "the mean values of some random 
variables j~(ei) is 3~," what will be the "subjective" probability measure Pi 
after the acquisition of this evidence? Kullback proposed to choose the p/ 
which minimizes the "information gain" or "discrimination information" 

iPi log(p//qi). 
Again, the arguments put forward in favor of this choice are somewhat 

hazy. In the light of the discussion on the MEP, we can propose a new 
argument which seems stronger because of its quantitative character. Con- 
sider again the set S of all sequences C ~ f~zv such that ~i(ni/N)fl(ci)~fl" 
The new probability p satisfies (1), thus p(S )  ~ 1, so that all the possible 
N-term outcomes shall belong almost surely to S. On the other hand, p 
should avoid bias. Since the prior probability is q, this is accomplished if 
and only if the relative probabilities of the elements of S do not change, i.e., 
if 

p ( C )  q (C)  
VC, C' E S (12) 

p (  c ' )  - q( C') ' 

As before, it can be again proved tha tp  satisfies (12) + (1) if and only 
if it minimizes the information gain subject to the constraints (1). More 
precisely, we have the following theorem: 

Theorem 2. Let f~ = (~],e2, . . . ,  ek) be a set, f/(e/) ( l =  1,2 . . . . .  m) 
A 

be functions of f~, and fl real numbers. Let q be a probability measure on f~ 
such that q(ci) ~ qi > 0 Vi, and p another probability measure such that 

E p~(s =j~, loft= 1,2 .... , m  (1) 
i 

and Pi > 0 Vi. Then Pi minimizes the Kullback "information gain" 
~i_pilog(pi/qi) if and only if it satisfies the condition Vr > 0 38 > 0 and 
3N 0 ~ ~d such that VN ~> N o 

] l o g [ p ( C ) / q ( C ) ]  l og[p (C ' ) / q (C ' ) ]  ] < e  (13) 
V C, C' ~ SN, ~ : N - N 

wherep(C), q(C) are the probabilities of the sequence C for the measuresp 
and q on ~2, and SN,~ the set defined by relation (4). 
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The proof of the theorem is exactly the same as the proof of Theorem 
1, so we omit it. 

6. CONCLUSION 

Our goal was to prove that the MEP is a consequence of the principle 
of Laplace. In order to achieve it, we passed from the space ~ to the space 
~Jv and then to the subset S c f~N defined in Section 2. This passage from 
the space 9 to the metaspaces f] and S is indicated by Russel's methodol- 
ogy, which is based on the hierarchy of the logical types, and was also used 
in a related article of M. Mugur-Sch/ichter. (8) The reason for doing so is 
here obvious. We cannot apply the principle of Laplace on f] since our 
information contains more than the mere knowledge of the set of all 
possible outcomes. On the other hand, all the available information can be 
expressed by the fact that almost surely C E S, so that the principle of 
Laplace is applicable on S. We reached our goal by showing that this 
implies the MEP. 

The theorem of Section 4 gives also a precise meaning to the frequent 
assertion that the probability distribution which maximizes the entropy is 
more "spread" than all others. (6) In fact this distribution is uniform on S. 

It is of course possible to desire an even deeper consideration of the 
conceptual roots of the MEP. In any case, our result shows that it is 
sufficient to reduce one's attention to the conceptually and mathematically 
much simpler principle of Laplace. 
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